一元三次方程(I)

程式可以計算一元三次方程的實根。

程式編寫日期: 2006年9月20日

程式(127步)

1 ENT 2. Kin 1 3. Kin 2 4. Kin 4 5. Kin 6
6. ENT 7. Kin 3 8. Min 9. Kin 5 10. ENT
11. Kin × 2 12. Kin × 3 13. Kin × 6 14. ENT 15. Kin × 1
16. 3 17. Kin × 1 18. Kin × 6 19. Kout 5 20. x2
21. Kin × 5 22. Kin - 6 23. Kout 6 24. x2 25. Kin × 6
26. Kout 1 27. Kin - 3 28. Kout 4 29. Kin × 3 30. 9
31. Kin × 3 32. 2 33. Kin ÷ 3 34. X←→K5 35. Kin - 3
36. Kout 3 37. R→P 38. x2 39. Kin + 6 40. 4
41. 9 42. +/- 43. 10x 44. Kin + 6 45. Kout 6
46. x2 47. 48. Kin ÷ 6 49. 50. Kin 1
51. = 52. 3 53. Kin × 5 54. X←→Y 55. ÷
56. 3 57. = 58. cos 59. Kin × 5 60 Kout 3
61. + 62. X←→K1 63. Kin - 1 64. = 65. 3
66. X←→K1 67. 3 68. Kin + 1 69. 1 70. Kin + 6
71. 2 72. Kin ÷ 6 73. Kout 6 74. Kin × 1 75. sin-1
76. cos 77 Kin × 5 78. Kout 5 79. Kin + 1 80. MR
81. Kin - 1 82. Kout 4 83. Kin 3 84. Kin ÷ 1 85. Kin ÷ 2
86. 3 87. Kin ÷ 1 88. Kout 1 89. Kin 6 90. Kin × 3
91. SCI 9 92. RND 93. Norm 94. Kin 1 95. HLT
96. MR 97. Kin + 3 98. Kout 3 99. Kin × 6 100. X←→K2
101. Kin + 6 102. Kout 3 103. x2 104. - 105. 2
106. +/- 107. Kin × 4 108. × 109. Kout 4 110. ×
111. Kout 6 112. = 113. 114. Kin + 2 115. Kin - 3
116. Kout 4 117. Kin ÷ 2 118. Kin ÷ 3 119. Kout 2 120. SCI 9
121. RND 122. X←→K3 123. RND 124. Kin 2 125. Norm
126. HLT 127. Kout 3 128.   129.   130.  

LRN 模式輸入程式(供fx-3800P使用,程式長度: 127步)

ENT 1 Kin 1 Kin 2 Kin 4 Kin 6
ENT 3 Kin 3 Min Kin 5 ENT 3
Kin × 2 Kin × 3 Kin × 6 ENT 1 Kin × 1
3 Kin × 1 Kin × 6 Kout 5 x2
Kin × 5 Kin - 6 Kout 6 x2 Kin × 6
Kout 1 Kin - 3 Kout 4 Kin × 3 9
Kin × 3 2 Kin ÷ 3 X←→K5 Kin - 3
Kout 3 R→P x2 Kin + 6 4
9 +/- 10x Kin + 6 Kout 6
x2 Kin ÷ 6 Kin 1
= 3 Kin × 5 X←→Y ÷
3 = cos Kin × 5 Kout 3
+ X←→K1 Kin - 1 = 3
X←→K1 3 Kin + 1 1 Kin + 6
2 Kin ÷ 6 Kout 6 Kin × 1 sin-1
cos Kin × 5 Kout 5 Kin + 1 MR
Kin - 1 Kout 4 Kin 3 Kin ÷ 1 Kin ÷ 2
3 Kin ÷ 1 Kout 1 Kin 6 Kin × 3
SCI 9 RND Norm Kin 1 HLT
MR Kin + 3 Kout 3 Kin × 6 X←→K2
Kin + 6 Kout 3 x2 - 2
+/- Kin × 4 × Kout 4 ×
Kout 6 = Kin + 2 Kin - 3
Kout 4 Kin ÷ 2 Kin ÷ 3 Kout 2 SCI 9
RND X←→K3 RND Kin 2 Norm
HLT Kout 3 MODE .    

 

例題1: 解 2x3 - x2 - 72x + 36 =0

P1  再按 2 RUN 1 +/- RUN 72 +/- RUN 36 RUN (顯示第一個根為6)

RUN (顯示第二個根為 0.5) RUN (顯示第三個根為 -6)

 

例題2: 解 3x3 - 5x2 + x - 4 =0

P1 再按 3 RUN 5 +/- RUN 1 RUN 4 +/- RUN (顯示第一個根為1.86977)

RUN (顯示-E-表示其餘兩根為複數根)

 

返回 fx-3900PV程式集

Free Web Hosting