三點求圓(I)

程式參考了網友roviury意見進行修改。

更新日期: 2010年4月30日

若已知圓周上三點的座標,程式可以計算圓心、半徑及圓方程。若果輸入數據為整數(或分數)時,圓心及圓方程的係數會以分數形式表示,半徑若為有理數(使用第二個程式)亦會以分數形式顯示,建議將計數機預先設定為假分數形式表示(按 SHIFT SETUP → → 2 )。

第一個程式 (123 bytes)

?→A: ?→B: ?→C: ?→D:

(C - A) ┘(B - D→Y: B + D - YA - YC→X:

?→C: ?→D: (C - A) ┘(B - D→M:

B + D - MA - MC→B:

(B - X) ┘(2Y - 2M→A◢ M Ans + B┘2→B◢

Pol( A - C, B - D◢ -2A◢ -2B◢ A2 + B2 - X2  

 

第二個程式 (分數版,131 bytes)

?→A: ?→B: ?→C: ?→D:

(C - A)┘(B - D→Y: B + D - YA - YC→X:

?→C: ?→D: (C - A)┘ (B - D→M:

B + D - MA - MC→B: (B - X)┘(2Y - 2M→A◢

M Ans + B┘2→B◢ √( (A - C)2 + (B - D)2→X◢

 -2A◢ -2B◢ A2 + B2 - X2

 

例題: 圓經過三點 (2,0),(0,1) 及 (0,4),求圓心, 半徑及圓的方程。

按 Prog 1 再按 2 EXE 0 EXE 0 EXE 1 EXE 0 EXE 4 EXE (顯示2) EXE (顯示5/2, 即圓心為(2, 5/2))

EXE (顯示半徑為5/2) EXE (顯示D為 -4) EXE (顯示E為 -5) = (顯示F為 4)

所以圓的方程為: x2 + y2 – 4x – 5y + 4 = 0

 

程式執行完成後,使用第一個程式可以按 RCL A, RCL B及RCL X分別顯示圓心的座標及半徑,使用第二個程式可以按 RCL A及RCL B顯示圓心的座標。

 

註: 若兩點的y坐標相同,程式有可能出現Math ERROR,解決的方法是將沒有相同y座標的點作為第一點輸入即可。

 

返回 CASIO fx-50FH 及 fx-50F PLUS 程式集

Free Web Hosting