點快速富利葉轉換(FFT)

程式編寫日期: 2006年7月11日

程式需要在 REG Quad 模式下執行,因此在輸入程式前請先按 Mode Mode 2 → 3 進入REG Quad模式。

注意: 藍色的英文字為統計模式中的變數(Σx3 按 Shift 1 → → 1,Σy 按 Shift 1 → 2,Σxy Shift 1 →3),而3是按shift x3πr 是按 Shift EXP Shift Ans 2

程式 (153 bytes)

Stat clear: ?→M: 3(M - 1 DT: ?→M: 1 , M DT: ?→M:

0 , M - Σy DT: ?→A: ?→B: ?→C: ?→D: ?→X: 0→M:

Lbl 0: πr M÷4→Y: Σx3 + Σxy cos Y + Σy cos2Y +

A cos3Y + B cos4Y + C cos5Y + D cos6Y + X cos7Y◢

- Σxy sinY - Σy sin2Y - A sin3Y - B sin4Y - C sin5Y -

D sin6Y - X sin7Y◢ M + 1→M: M - 8 => Goto 0: Norm 1

 

Example: Perform a 8-sample FFT for the input sequence x[n]={ 1, 2, 0, 1, 2, 1, 0, 0}

Press Prog 1   1 EXE 2 EXE 0 EXE 1 EXE 2 EXE 1 EXE 0 EXE 0

EXE (read-out: 7) EXE (read-out: 0)

EXE (read-out: - 1) EXE (read-out:-1.4142)

EXE (read-out: 3) EXE (read-out: - 2)

EXE (read-out: - 1) EXE (read-out: -1.4142)

EXE (read-out: - 1) EXE (read-out: 0)

EXE (read-out: - 1) EXE (read-out: 1.4142)

EXE (read-out: 3) EXE (read-out: 2)

EXE (read-out: - 1) EXE (read-out: 1.4142)

 

Therefore, the result is:

X[0] = 7

X[1] = - 1 - 1.4142 j

X[2] = 3 - 2j

X[3] = - 1 - 1.4142j

X[4] = - 1

X[5] = - 1 + 1.4142j

X[6] = 3 + 2j

X[7] = - 1 + 1.4142j

 

返回 fx-3650P及SC185程式集

Free Web Hosting