等差數列 (應用內置線性回歸功能)

編寫日期: 20061226

等差數列的通項為: T(n) = a + (n-1)d,其實與線性回歸的方程 y = a +bx 是屬於同一類型方程。因此某些等差數列的問題,可以利用線性回歸功能計算答案,請參看以下例題。

 

 

例題1: 等差數列中,若T(7)=3 T(24)= - 48,求首項、第100項、公差及通項T(n)

2ndF MODE 2 (進入線性回歸模式) 7 (x,y) 3 DATA 24 (x,y) -48 DATA

再按 1 2ndF y’ (顯示首項為21) 100 2ndF y’ (顯示第100項為 -276)

RCL b (顯示公差為 -3) RCL a (顯示常數為24)

所以通T(n)項為 24 – 3n

 

例題2: 求等差數列 58, 55, 52, ……., -8的項數。

2ndF MODE 2 (進入線性回歸模式) 1 (x,y) 58 DATA 2 (x,y) 55 DATA

再按 -8 2ndF x’ (顯示項數為 24)

計算完結後,按 MODE 0 返回正常計算模式。

 

1:  y’ 用於為計算某項的數值(T(n))x’用於計算某數值是項數(n)b 顯示公項的數值。

2: 若果你已在MODE 2的模式,重複計算相似問題,則可按2ndF CA代替再按2ndF MODE 2

 

返回EL-509V內置功能

Free Web Hosting